The Discovery of Hydrothermal Vents

Deeper Discovery | Resources | Scientific References

Acton, G., S. Stein, et al. (1988). Formation of curved seafloor fabric by changes in Rift propagation velocity and spreading rate: Application to the 95.5°W Galápagos Propagator. J. Geophys. Res. 93: 11,845-11,861.

Allmendinger, R. W. and F. Riis (1979). The Galápagos Rift at 86°W, 1. Regional morphological and structural analysis. J. Geophys. Res. 84: 5379-5389.

Ballard, R. D., R. T. Holcomb, et al. (1979). The Galápagos Rift at 86°W: 3. Sheet flows, collapse pits, and lava lakes of the Rift valley. J. Geophys. Res. 84: 5407-5422.

Ballard, R. D., T. H. van Andel, et al. (1982). The Galápagos Rift at 86°W, 5. Variations in volcanism, structure, and hydrothermal activity along a 30-kilometer segment of the Rift valley. J. Geophys. Res. 87: 1149-1161.

Barrett, T. J., H. Friedrichsen, et al. 16. Elemental and stable isotopic composition of some metalliferous and pelagic sediments from the Galápagos Mounds Area, Deep Sea Drilling Project, Leg 70, 315-323.

Berg, C. J. and R. D. Turner (1980). Description of living specimens of Calyptogena magnifica Boss and Turner with notes on their distribution and ecology. Malacologia 20: 183-185.

Bolger, G. W., P. R. Betzer, et al. (1978). Hydrothermally derived manganese suspended over the Galápagos Spreading Center. Deep-Sea Res. 25: 721-733.

Boss, K. J. and R. D. Turner (1980). The giant white clam form the Galápagos Rift, Calyptogena magnifica species novum. Malacologia 20(1): 161-194.

Bucklin, A. (1988). Allozymic variability of Riftia-pachyptila populations from the Galápagos Rift eastern pacific ocean and 21 degrees n hydrothermal vents. Deep-Sea Res. Part A Oceanogr Res Pap 35(10-11): 1759-1768.

Burreson, E. M. (1981). A new deep-sea leech, Bathybdella sawyeri n. gen., n. sp. from thermal vent areas on the Galápagos Rift. Proc. Biol. Soc. Wash., 94(2): 483-491.

Childress, J. J. (1988). Biology and chemistry of a deep-sea hydrothermal vent on the Galápagos Rift; the Rose Garden in 1985, an introduction. Deep-Sea Res. 35(10/11): 1677-1680.

Childress, J. J. (1988). Hydrothermal vents, a case study of the biology and chemistry of a deep-sea hydrothermal vent of the Galápagos Rift. Deep-Sea Res. 35(10/11A): 1677-1849.

Christie, D. M. and J. M. Sinton (1983). Major element constraints on melting, differentiation, and mixing of magmas from the Galápagos 95.5°W propagating Rift system. Contributions to Mineralogy and Petrology 94: 274-288.

Cobler, R. and J. Dymond (1980). Sediment trap experiment on the Galápagos spreading center, Equatorial Pacific. Science 209: 801-803.

Cohen, D. M. and R. L. Haedrich (1983). The fish fauna of the Galápagos thermal vent region. Deep-Sea Res. 30A: 371-379.

Corliss, J.B., M. Lyle and J. Dymond (1978). The chemistry of hydrothermal mounds near the Galápagos Rift. Earth Planet. Sci. Lett., 40: 12-24.

Corliss, J. B., J. Dymond, et al. (1979). Submarine thermal springs on the Galápagos Rift. Science 203: 1073-1083.

Corliss, J. B., L. I. Gordon and J. M. Edmond (1979). Some implications of heat/mass raios in Galápagos Rift hydrothermal fluids for models of seawater-rock interaction and the formation of oceanic crust. In: M. Talwani (ed), Deep Drilling Results in the Atlantic Ocean: Oceanic Crust, American Geophysical Union, Series 2.

Crane, K. (1978). Structure and tectonogenesis of the Galápagos inner Rift, 86°10' W. J. Earth Planet. Sci. Lett. 86: 715-730.

Crane, K. (1979). The Galápagos Rift at 86°W: Morphological wave forms: Evidence for a propagating Rift. J. Geophys. Res. 84: 6011-6018.

Crane, K. and R. D. Ballard (1980). The Galápagos Rift at 86 W: Structure and morphology of hydrothermal fields and their relationship tothe volcanic and tectonic processes of the Rift valley. J. Geophys. Res., 85(B3): 1443-1454.

Debevoise, A. E., J. J. Childress, et al. (1990). Carotenoids indicate differences in diet of the hydrothermal vent crab Bythograea thermydron (Brachyura). Mar Biol (Berl) 105(1): 109-116.

Desbruyeres, D. and L. Laubier (1983). Paralvinella grasslei, new genus, new species of Alvinellinae (Polychaeta: Ampharetidae) from the Galápagos Rift geothermal vents. Proc. Biol. Soc. Wash. 95(3): 482-492.

Detrick, R. S., D. L. Williams, et al. (1974). The Galápagos Spreading Center: Bottom-water temperatures and significance of geothermal heating. Geophys. J. R. Astron. Soc. 38: 627-637.

Dymond, J., R. Cobler, et al. (1983). 226Ra and 222Rn contents of Galápagos Rift hydrothermal waters - the importance of low temperature interactions with crustal rocks. Earth Plant. Sci. Lett. 64: 417-429.

Edmond, J. M., J. B. Corliss, et al. (1979). Ridge Crest - Hydrothermal metamorphism at the Galápagos spreading center and reverse weathering. Deep Drilling Results in the Atlantic Ocean: Ocean Crust. M. Talwani, C. B. Harrison and D. E. Hayes, American Geophysical Union. Series 2.

Edmond, J. M., C. Measures, et al. (1979). Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galápagos data. Earth Planet. Sci. Lett. 46: 1-18.

Embley, R. W., I. R. Jonasson, et al. (1988). Submersible investigation of an extinct hydrothermal system on the Galápagos Ridge: sulfide mounds, stockwork zone, and differentiated lavas. Can. Mineral. 26: 517-539.

Fehn, U., R. P. Von Herzen, et al. (1983). Numerical models for the hydrothermal field at the Galápagos spreading center. J. Geophys. Res. 88: 1033-1048.

Fisher, C. R., J. J. Childress, et al. (1987). The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol (Berl) 96(1): 59-72.

Fisher, C. R., J. J. Childress, et al. (1988). Microhabitat variation in the hydrothermal vent mussel Bathymodiolus thermophilus, at Rose Garden vent on the Galápagos Rift. Deep-Sea Res. 35(10/11): 1769-1792.

Fisher, C. R., J. J. Childress, et al. (1988). Variations in the hydrothermal-vent clam, Calyptogena magnifica, at the Rose Garden vent on the Galápagos spreading center. Deep-Sea Res.. 35: 1811-1831.

Fisher, C. R., J. J. Childress, et al. (1988). Variation in the hydrothermal vent clam, Calyptogena magnifica, at the Rose Garden vent on the Galápagos spreading center. Deep-Sea Res. 35(10/11): 1811-1832.

Fisk, M. R., A. E. Bence, et al. (1982). Major element geochemistry of Galápagos Rift zone magmas and their phenocrysts. Earth and Planetary Science Letters 61: 171-189.

Fornari, D. J., M. R. Perfit, et al. (1983). Geochemical studies of abyssal lavas recovered by DSRV Alvin from eastern Galápagos Rift, Inca Transform, and Ecuador Rift. 1. Major element variations in natural glasses and spatial distribution of lavas. J. Geophys. Res. 88: 10519-10529.

Fretter, V., A. Graham, et al. (1981). The anatomy of the Galápagos Rift limpet, Neomphalus fretterae. Malacologia 21(1-2): 337-361.

Geistdoerfer, P. (1986). New records and redescription of a zoarcidae fish from the hydrothermal vents of the East Pacific Rise. Bull Mus Natl Hist Nat Sect A Zool Biol Ecol Anim 8(4): 969-980.

Grassle, J. F., C. J. Berg, et al. (1979). Galápagos '79: Initial findings of a deep-sea biological quest. Oceanus 22(2): 1-10.

Grassle, J. P. (1985). Genetic differentiation in populations of hydrothermal vent mussels bathymodiolus-thermophilus from the Galápagos Rift and 13 degrees north on the East Pacific Rise. Jones, M. L. (Ed.). Bulletin Of The Biological Society Of Washington, No 6: 429-442.

Grassle, J. F. (1986). The ecology of deep-sea hydrothermal vent communities. Blaxter, J. H. S. And A. J. Southward (Ed.). Advances In Marine Biology 23: 301-362.

Green, K. E. and R. P. von Herzen (1981). The Galápagos spreading center at 86 W: A detailed geothermal field study. J. Geophys. Res. 86(B2): 979-986.

Herzig, P. M., K. P. Becker, et al. (1988). Hydrothermal silica chimney fields in the Galápagos spreading center at 86°W. Earth Planet. Sci. Lett. 89: 261-272.

Hessler, R. R. and W. M. Smithy, Jr. (1983). The distribution and community structure of megafauna at the Galápagos Rift hydrothermal vents. Hydrothermal processes at seafloor spreading centers. P. A. Rona, K. Boström, L. Laubier and K. L. Smith, Jr. New York, Plenum Press: 735-770.

Hessler, R. R. (1984). Dahlella-caldariensis new-genus new-species a leptostracan crustacea malacostraca from deep-sea hydrothermal vents. J Crustacean Biol 4(4): 655-664.

Hessler, R. R. (1987). Temporal change in hydrothermal vent communities six years made a big difference at Rose Garden, Galápagos Islands, Ecuador. 153rd National Annual Meeting Of The American Association For The Advancement Of Science, Chicago, Illinois, USA, February (153).

Hessler, R. R., W. M. Smithey, et al. (1988). Temporal changes in megafauna at the Rose Garden hydrothermal vent, Galápagos Rift, eastern tropical Pacific. Deep-Sea Res. Part A Oceanogr Res Pap 35(10-11): 1681-1710.

Honnorez, J., A.-M. Karpoff, et al., Eds. (1983). Sedimentology, mineralogy, and geochemistry of green clay samples from the Galápagos hydrothermal mounds, Holes 506, 506C, and 507D, Deep Sea Drilling Project Leg 70 (Preliminary Data). Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Government Printing Office).

Honnorez, J., A.-M. Karpoff, et al. (1983). 9. Sedimentology, mineralogy, and geochemistry of green clay samples from the Galápagos hydrothermal mounds, Holes 506, 506C, and 507D, Deep Sea Drilling Project Leg 70 (preliminary data). Initial Reports of the Deep Sea Drilling Project. J. Honnorez and R. P. Von Herzen, et al. Washington, D.C., U.S. Government Printing Office. 70: 211-220.

Humes, A. G. and M. Dojiri (1980). A siphonostome copepod associated with a vestimentiferan from the Galápagos Rift and the East Pacific Rise. Proc. Biol. Soc. Wash. 93(3): 697-707.

Humes, A. G. (1987). Copepoda from deep-sea hydrothermal vents. Bull Mar Sci 41(3): 645-788.

Humes, A. G. (1988). Hyalopontius-boxshalli new-species copepoda siphonostomatoida from a deep-sea hydrothermal vent at the Galápagos Rift. Proc Biol Soc Wash 101(4): 825-831.

Humes, A. G. (1989). Rhogobius-pressulus new-species copepoda siphonostomatoida from a deep-sea hydrothermal vent at the Galápagos Rift, Eastern Pacific. Pac Sci 43(1): 27-31.

Humphris, S. E., W. G. Melson, et al. (1980). 34. Basalt weathering on the East Pacific Rise and the Galápagos Spreading Center, Deep Sea Drilling Project Leg 54. Initial Reports of the Deep Sea Drilling Project. B. R. Rosendahl and R. Hekinian, et al. Washington, D.C., U.S. Government Printing Office: 773-787.

Jenkins, W. J., J. M. Edmond, et al. (1978). Excess 3He and 4He in Galápagos submarine hydrothermal waters. Nature 272: 156-158.

Johnson, K. S., J. J. Childress, et al. (1988). Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galápagos Spreading Center. Deep-Sea Res. Part A Oceanogr Res Pap 35(10-11): 1723-1744.

Johnson, K. S., C. M. Sakamoto-Arnold, et al. (1988). The biogeochemistry of hydrothermal vent communities in the Galápagos Rift. Eos 69(44): 1271.

Jones, M. L. (1980). Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galápagos Rift geothermal vents (Pogonophora). Proc. Biol. Soc. Wash. 93(4): 1295-1313.

Jones, M. L. (1981). Riftia pachyptila Jones: Observations on the vestimentiferan worm from the Galápagos Rift. Science 213: 333-336.

Karl, D. M., C. O. Wirsen, et al. (1980). Deep-sea primary productivity at the Galápagos hydrothermal vents. Science 207: 1345-1347.

Kenk, V. C. and B. R. Wilson (1985). A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galápagos Rift zone. Malacologia 26(1-2): 253-272.

Kawahata, H. and T. Furuta (1985). Sub-sea-floor hydrothermal alteration in the Galápagos spreading center. Chem. Earth Planet. Sci. Lett. 49: 259-274.

Kleinrock, M. C. and R. N. Hey (1989). Detailed tectonics near the tip of the Galápagos 95.5oW propagator: How the lithosphere tears and a spreading axis develops. J. Geophys. Res. 94: 13,801-13,838.

Kleinrock, M. C., R. C. Searle, et al. (1989). Tectonics of the failing spreading system associated with the 95.5oW Galápagos propagator. J. Geophys. Res. 94: 13, 839-13,858.

Klinkhammer, G., M. Bender, et al. (1977). Hydrothermal manganese in the Galápagos Rift. Nature 269: 319-320.

Klitgord, K. and J. Mudie (1974). The Galápagos spreading center: A near-bottom geophysical survey. Royal Astron. Soc. Geophys. Jour. 38: 563-586.

Krantz, G. W. (1982). A new species of Copidognathus Trouessart (Acari: Actinedida: Halacaridae) from the Galápagos Rift. Can. J. Zool. 60(7): 1728-1731.

Kurnosov, V. B., O. V. Chudaev, et al. (1983). 10. Mineralogy and geochemistry of sediments from Galápagos hydrothermal mounds, Leg 70, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project. J. Honnorez and R. Von Herzen, et al. Washington, D.C., U.S. Government Printing Office. LXX: 225-233.

Laubier, L. (1987). Communities associated with deep-ocean hydrothermalism population biology and biogeographic data. Bull Soc Zool Fr 112(3-4): 495-506.

Lilley, M. D., J. A. Baross, et al. (1983). Reduced gases and bacteria in hydrothermal vent fluids: the Galápagos Spreading Center and 21°N East Pacific Rise. Hydrothermal Processes at Seafloor Spreading Centers. P. A. Rona, K. Bostrom, L. Laubier and K. L. Smith, Jr. New York, Plenum Press: 411-449.

Lonsdale, P. (1977). Abyssal pahoehoe with lava coils at the Galápagos Rift. Geology 5: 147-152.

Lonsdale, P. (1977). Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res.: 24: 857-863.

Lonsdale, P. (1977). Deep-tow observations at the Mounds Abyssal Hydrothermal Field, Galápagos Rift. Earth Planet. Sci. Lett. 36: 92-110.

Lupton, J. E., R. F. Weiss, et al. (1977). Mantle helium in hydrothermal plumes in the Galápagos Rift. 267: 603-604.

Lutz, R. A., D. Jablonski, et al. (1980). Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galápagos Rift. Mar. Biol. 57: 127-133.

Lutz, R. A. (1983). Shell microstructure and mineralogy of 2 species of bivalves from deep-sea hydrothermal vents. 48th Annual Meeting Of The American Malacological Union, New Orleans, La., Usa, July 1.

Lutz, R. A. and L. W. Fritz (1987). Growth of calyptogena-magnifica at two deep-sea hydrothermal vents in the eastern pacific. 153rd National Annual Meeting Of The American Association For The Advancement Of Science, Chicago, Illinois, Usa, February: 153.

Lutz, R. A., L. W. Fritz, et al. (1988). A comparison of bivalve calyptogena-magnifica growth at two deep-sea hydrothermal vents in the eastern pacific. Deep-Sea Res. Part A Oceanogr Res Pap 35(10-11): 1793-1810.

Macdonald, K. C. and J. D. Mudie (1974). Microearthquakes on the Galápagos spreading centre and the seismicity of fast-spreading ridges. Geophys. J. Roy. Astr. Soc. 36: 245-257.

Maciolek, N. J. (1981). Spionidae (Annelida: Polychaeta) from the Galápagos Rift geothermal vents. Proc. Biol. Soc. Wash. 94(3): 826-837.

Malahoff, A. (1982). A comparison of the massive submarine polymetalic sulfides of the Galápagos Rist with some continental deposits. Mar.Tech. Soc. J. 16(3): 39-45.

Malahoff, A., R. W. Embley, et al. (1983). The geological setting and chemistry of hydrothermal sulfides and associated deposits from the Galápagos Rift at 86°W. Mar. Mining 4: 123-137.

Malahoff, A. (1985). Hydrothermal vents and polymetallic sulfides of the Galápagos, Ecuador and Gorda-Juan de Fuca Ridge North America systems and of submarine volcanoes. Jones, M. L. (Ed.). Bulletin Of The Biological Society Of Washington, No 0(0):

McLean, J. H. (1981). The Galápagos Rift limpet Neomphalus: Relevance to understanding the evolution of a major Paleozoic- Mesozoic radiation. Malacologia 21(1-2): 291-336.

McLean, J. H. (1988). New archaeogastropod limpets from hydrothermal vents superfamily lepetodrilacea i. systematic descriptions. Philos Trans R Soc Lond B Biol Sci 319(1192): 1-32.

McLean, J. H. (1989). New slit-limpets scissurellacea and fissurellacea from hydrothermal vents part 1. systematic descriptions and comparisons based on shell and radular characters. Contrib Sci (Los Angel) 0(407): 1-29.

McLean, J. H. (1990). Neolepetopsidae a new docoglossate limpet family from hydrothermal vents and its relevance to patellogastropod evolution. J Zool (Lond) 222(3): 485-528.

McMurtry, G. M., C.-H. Wang, et al. (1983). Chemical and isotopic investigations into into the origin of clay minerals from the Galápagos hydrothermal mounds field. Geochim. Cosmochim. Acta 47: 475-489.

Natland, J. H., B. Rosendahl, et al. (1979). Galápagos hydrothermal mounds: stratigraphy and chemistry revealed by deep-sea drilling. 204: 613-616.

Perfit, M. R., D. J. Fornari, et al. (1983). Geochemical studies of abyssal lavas recovered by DSRV Alvin from eastern Galápagos Rift, Inca Transform, and Ecuador Rift. 3. Trace element abundances and petrogenesis. J. Geophys. Res. 88: 10551-10572.

Pettibone, M. H. (1984). 2 new species of lepidonotopodium polychaeta polynoidae lepidonotopodinae from hydrothermal vents off the Galápagos and East Pacific Rise at 21 degrees north. Proc Biol Soc Wash 97(4): 849-863.

Pettibone, M. H. (1985). Additional branchiate scale-worms polychaeta polynoidae from Galápagos hydrothermal vent and Rift-area off Western Mexico at 21 degrees north. Proc Biol Soc Wash 98(2): 447-469.

Pettibone, M. H. (1985). New genera and species of deep-sea macellicephalinae and harmothoinae polychaeta polynoidae from the hydrothermal Rift areas off the Galápagos and Wwestern Mexico at 21 degrees north and from the Santa-Catalina channel. Proc Biol Soc Wash 98(3): 740-757.

Pettibone, M. H. (1986). A new scale-worm commensal with deep-sea mussels in the seep-sites at the florida escarpment in the eastern Gulf of Mexico polychaeta polynoidae branchipolynoinae. Proc Biol Soc Wash 99(3): 444-451.

Pettibone, M. H. (1989). Polynoidae and sigalionidae polychaeta from the Guaymas Basin, Gulf of California, Mexico with descriptions of two new species and additional records from hydrothermal vents of the Galápagos Rift, 21 degrees north, and seep-sites in the Gulf of Mexico, Florida and Louisiana, USA. Proc Biol Soc Wash 102(1): 154-168.

Rhoads, D. C., R. A. Lutz, et al. (1981). Growth of bivalves at deep sea hydrothermal vents along the Galápagos Rift. Science 214: 911-933.

Rhoads, D. C., R. A. Lutz, et al. (1982). Growth and predation activity at deep-sea hydrothermal vents along the Galápagos Rift. J. Mar. Res. 40: 503-516.

Ridley, W. I., M. R. Perfit, et al. (1994). Hydrothermal alteration in ocean ridge volcanics: a detailed study at the Galápagos fossil hydrothermal field. Geochim. Cosmochim. Acta 58: 2477-2494.

Rosenblatt, R. H. and D. M. Cohen (1986). Fishes living in deep sea thermal vents in the tropical estern Pacific, with descriptions of a new genus and two new species of eelpouts (Zoarcidae). Trans San Diego Soc Nat Hist 21(4): 71-79.

Ruby, E. G., C. O. Wirsen, et al. (1981). Chemolithotrophic sulfur-oxidizing bacteria from the Galápagos Rift hydrothermal vents. Appl. Environ. Microbiol. 42(2): 317-324.

Sclater, J. G. and K. D. Klitgord (1973). A detailed heat flow, topographic, and magnetic survey across the Galápagos spreading center at 86oW. J. Geophys. Res. 78: 6951-6975.

Searle, R. C. and J. Francheteau (1986). Morphology and tectonics of the Galápagos triple junction. Mar. Geophys. Res. 8: 95-129.

Smith, K. L., Jr. (1984). Deep-sea hydrothermal vent mussels: nutritional state and distribution at the Galápagos Rift. Ecology 66: 1067-1080.

Smith, D. R. and A. R. Flegal (1989). Elemental concentrations of hydrothermal vent organisms from the Galápagos Rift. Mar Biol (Berl) 102(1): 127-134.

Stuardo, J. and C. Valdovinos (1988). A new bathyal calyptogena from off the coast of Central Chile: bivalvia vesicomyidae. J Malacol 47(4): 241-250.

Terwilliger, R., N. Terwilliger, et al. (1985). Structural and functional properties of hemoglobin from the vestimentiferan pogonophoran lamellibrachia. Biochim. Biophys. Acta 829(1): 27-33.

Turekian, K. K., J. K. Cochran, et al. (1979). Growth rates of a clam from the Galápagos Rise hot spring field using natural nucleotide ratios. Nature 280: 385-387.

Turekian, K. K. and J. K. Cochran (1981). Growth rate of a vesicomyid clam from the Galápagos spreading center. Science 214: 909-911.

Tuttle, J. H., C. O. Wirsen, et al. (1983). Microbial activities in the emitted hydrothermal waters of the Galápagos Rift vents. Mar. Biol. 73: 293-299.

Van Andel, T. H. and R. D. Ballard (1979). The Galápagos Rift at 86°W: 2. Volcanism, structure, and evolution of the Rift valley. J. Geophys. Res. 84(B10): 5390-5406.

Van Dover, C. L., C. J. J. Berg, et al. (1988). Recruitment of marine invertebrates to hard substrates at deep-sea hydrothermal vents on the east pacific rise eastern pacific ocean and Galápagos spreading center. Deep-Sea Res. Part A Oceanogr Res Pap 35(10-11): 1833-1849.

Weiss, R. F., P. Lonsdale, et al. (1977). Hydrothermal plumes in the Galápagos Rift. Nature 267: 600-603.

Williams, D. L., K. Green, et al. (1979). The hydrothermal mounds of the Galápagos Rift: Observations with DSRV Alvin and detailed heat flow studies. J. Geophys. Res. 84: 7467-7484.

Williams, A. B. (1980). A new crab family from the vicinity of submarine thermal vents on the Galápagos Rift (Crustacea: Decapoda: Brachyura). Proc. Biol. Soc. Wash. 93(2): 443-472.

Williams, P. M., K. L. Smith, et al. (1981). Dietary carbon sources of mussels and tubeworms from Galápagos hydrothermal vents determined from tissue 14C activity. Nature 292: 448-449.

Williams, A. B. and F. A. J. Chace (1982). A new caridean shrimp of the family Bresiliidae from thermal vents of the Galápagos Rift. J.Crust. Biol 2(1): 136-147.

Williams, A. B. and F. A. Chace, Jr. (1982). A new caridean shrimp of the family Bresiliidae from thermal vents of the Galápagos Rift. J. Crust. Biol. 2: 136-147.

Williams, I. P. and H. L. Sanders (1990). Macrofaunal community structure and zoogeography of hydrothermal vents at the Galápagos Rift and 21 degrees North on the East Pacific Rise. University Of Maryland And The Smithsonian Institute. Fourth International Congress Of Systematic And Evolutionary Biology; College Park, Maryland, USA, July.

Wilmot, D. B. J. and R. D. Vetter (1990). The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Mar Biol (Berl) 106(2): 273-284.

Wittenberg, J. B., R. J. Morris, et al. (1981). Hemoglobin kinetics of the Galápagos Rift vent worm Riftia pachyptila Jones (Pogonophora: Vestimentifera). Science 213: 344-346.

Wittenberg, J. B., R. J. Morris, et al. (1981). Oxygen binding by hemoglobin of the Galápagos Rift vent worm Riftia pachyptila Jones (Pogonophora: Vestimentifera). Biochim. Biophys. Acta 670: 255-259.

Wittenberg, J., R. J. Morris, et al. (1981). Hemoglobin kinetics of the Galápagos Rift vent worm Riftia pachyptila Jones (Pogonophora: Vestimentifera). Science 213: 344-346.

Wittenberg, J. B., R. J. Morris, et al. (1981). Oxygen binding by hemoglobin of the Galápagos Rift vent tubeworm Riftia pachyptila Jones (Pogonophora: Vestimentifera). Biochim. Biophys. Acta 670: 255-259.

Woodwick, K. H. and T. Sensenbaugh (1985). Saxipendium-coronatum new-genus new-species hemichordata enteropneusta the unusual spaghetti worms of the Galápagos Rift hydrothermal vents. Proc Biol Soc Wash 98(2): 351-365.

Zottoli, R. (1983). Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galápagos Rift, and the role of this species in Rift ecosystems. Proc. Biol. Socl Wash 96: 379-391.



close window